Similarity-First Search: a new algorithm with application to Robinsonian matrix recognition

نویسندگان

  • Monique Laurent
  • Matteo Seminaroti
چکیده

We present a new efficient combinatorial algorithm for recognizing if a given symmetric matrix is Robinsonian, i.e., if its rows and columns can be simultaneously reordered so that entries are monotone nondecreasing in rows and columns when moving toward the diagonal. As main ingredient we introduce a new algorithm, named Similarity-First-Search (SFS), which extends Lexicographic BreadthFirst Search (Lex-BFS) to weighted graphs and which we use in a multisweep algorithm to recognize Robinsonian matrices. Since Robinsonian binary matrices correspond to unit interval graphs, our algorithm can be seen as a generalization to weighted graphs of the 3-sweep Lex-BFS algorithm of Corneil for recognizing unit interval graphs. This new recognition algorithm is extremely simple and, for an n×n nonnegative matrix with m nonzero entries, it terminates in n− 1 SFS sweeps, with overall running time O(n + nm log n).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lex-BFS-Based Recognition Algorithm for Robinsonian Matrices

Robinsonian matrices arise in the classical seriation problem and play an important role in many applications where unsorted similarity (or dissimilarity) information must be reordered. We present a new polynomial time algorithm to recognize Robinsonian matrices based on a new characterization of Robinsonian matrices in terms of straight enumerations of unit interval graphs. The algorithm is si...

متن کامل

Weighted similarity measure on interval-valued fuzzy sets and its application to pattern recognition

A new approach to define the similarity measure betweeninterval-valued fuzzy sets is presented. The proposed approach isbased on a weighted measure in which the normalized similaritiesbetween lower functions and also between upper functions arecombined by a weight parameter. The properties of this similaritymeasure are investigated. It is shown that, the proposed measurehas some advantages in c...

متن کامل

مقایسه روش‌های مختلف یادگیری ماشین در خلاصه‌سازی استخراجی گفتار به گفتار فارسی بدون استفاده از رونوشت

In this paper, extractive speech summarization using different machine learning algorithms was investigated. The task of Speech summarization deals with extracting important and salient segments from speech in order to access, search, extract and browse speech files easier and in a less costly manner. In this paper, a new method for speech summarization without using automatic speech recognitio...

متن کامل

PARTICLE SWARM-GROUP SEARCH ALGORITHM AND ITS APPLICATION TO SPATIAL STRUCTURAL DESIGN WITH DISCRETE VARIABLES

Based on introducing two optimization algorithms, group search optimization (GSO) algorithm and particle swarm optimization (PSO) algorithm, a new hybrid optimization algorithm which named particle swarm-group search optimization (PS-GSO) algorithm is presented and its application to optimal structural design is analyzed. The PS-GSO is used to investigate the spatial truss structures with discr...

متن کامل

A Structural Characterization for Certifying Robinsonian Matrices

A symmetric matrix is Robinsonian if its rows and columns can be simultaneously reordered in such a way that entries are monotone nondecreasing in rows and columns when moving toward the diagonal. The adjacency matrix of a graph is Robinsonian precisely when the graph is a unit interval graph, so that Robinsonian matrices form a matrix analogue of the class of unit interval graphs. Here we prov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2017